Second birth rates in Denmark
1981 — 1994

The effect of education

Mette Harhoff, University of Copenhagen
Niels Keiding, University of Copenhagen
Lisbeth B. Knudsen, Aalborg University
Katrine Strandberg Larsen, National Institute of Public Health
Overview

- Background
- Data and Methods
- Results
- Discussion/Concluding Remarks
Background
General background information on DK

- TFR lowest in 1983 (1.38), highest in 1994 (1.81) (Statistics Denmark, 2002)
General background information on DK

- TFR lowest in 1983 (1.38), highest in 1994 (1.81) (Statistics Denmark, 2002)
- Female labour force participation among the highest in the world,
 65 per cent in 1980 and 71 per cent in 1994 (ages 16-66) (Knudsen, 2002)
General background information on DK

- TFR lowest in 1983 (1.38), highest in 1994 (1.81) (Statistics Denmark, 2002)
- Female labour force participation among the highest in the world, 65 per cent in 1980 and 71 per cent in 1994 (ages 16-66) (Knudsen, 2002)
- Mean age at first birth, 24.8 (1981), 27.3 (1994)
General background information on DK

- TFR lowest in 1983 (1.38), highest in 1994 (1.81) (Statistics Denmark, 2002)
- Female labour force participation among the highest in the world, 65 per cent in 1980 and 71 per cent in 1994 (ages 16-66) (Knudsen, 2002)
- Mean age at first birth, 24.8 (1981), 27.3 (1994)
- Maternity leave:
 - From 1981: 4 weeks prior to expected time of delivery, 14 weeks after delivery
 - From 1984: 20 weeks, later extended to 24 weeks (some weeks could be taken by the father)
General background information on DK

- TFR lowest in 1983 (1.38), highest in 1994 (1.81) (Statistics Denmark, 2002)
- Female labour force participation among the highest in the world,
 65 per cent in 1980 and 71 per cent in 1994 (ages 16-66) (Knudsen, 2002)
- Mean age at first birth, 24.8 (1981), 27.3 (1994)
- Maternity leave:
 - From 1981: 4 weeks prior to expected time of delivery, 14 weeks after delivery
 - From 1984: 20 weeks, later extended to 24 weeks (some weeks could be taken by the father)
- Day nurseries for ages 0-3, Kindergartens for ages 3-6
General background information on DK

- TFR lowest in 1983 (1.38), highest in 1994 (1.81) (Statistics Denmark, 2002)
- Female labour force participation among the highest in the world,
 65 per cent in 1980 and 71 per cent in 1994 (ages 16-66) (Knudsen, 2002)
- Mean age at first birth, 24.8 (1981), 27.3 (1994)
- Maternity leave:
 - From 1981: 4 weeks prior to expected time of delivery, 14 weeks after delivery
 - From 1984: 20 weeks, later extended to 24 weeks (some weeks could be taken by the father)
- Day nurseries for ages 0-3, Kindergartens for ages 3-6
- Coverage 75 per cent for kindergartens, 50 per cent for day nurseries
Hypothesis

- Expect positive effect of education on second birth rates. Such results have been found for other Western European Countries:
 1. Western Germany (Kreyenfeld, 2002),
Hypothesis

- Expect positive effect of education on second birth rates. Such results have been found for other Western European Countries:
 1. Western Germany (Kreyenfeld, 2002),
- Time-squeeze hypothesis (Kreyenfeld, 2002)
 - Postponement of first birth due to education
 - Biological limitations \implies births have to be *squeezed* together
Hypothesis

- Expect positive effect of education on second birth rates. Such results have been found for other Western European Countries:
 1. Western Germany (Kreyenfeld, 2002),
- Time-squeeze hypothesis (Kreyenfeld, 2002)
 - Postponement of first birth due to education
 - Biological limitations → births have to be squeezed together
- Duration perspective
Hypothesis

- Expect positive effect of education on second birth rates. Such results have been found for other Western European Countries:
 1. Western Germany (Kreyenfeld, 2002),
- Time-squeeze hypothesis (Kreyenfeld, 2002)
 - Postponement of first birth due to education
 - Biological limitations \Rightarrow births have to be squeezed together
- Duration perspective
 - *Is there more to time-squeeze than age?*
Data and Methods

- The Fertility of Women and Couples Dataset
- The study population
- The sample size
- (In)dependent variables
- Age at first birth
- Educational attainment
- Partnership status
- Median age at first child
- Statistical Methods (1)
- Statistical Methods (2)
The Fertility of Women and Couples Dataset

- Register-based, Statistics Denmark
The Fertility of Women and Couples Dataset

- Register-based, Statistics Denmark
- Socio-demographic characteristics for each year 1981-1994 for all women in fertile age range (13-49)
The Fertility of Women and Couples Dataset

- Register-based, Statistics Denmark
- Socio-demographic characteristics for each year 1981-1994 for all women in fertile age range (13-49)
- Permanent address in Denmark
The Fertility of Women and Couples Dataset

- Register-based, Statistics Denmark
- Socio-demographic characteristics for each year 1981-1994 for all women in fertile age range (13-49)
- Permanent address in Denmark
- Information on births from Register of Population Statistics + Medical Register of Birth and Death
The Fertility of Women and Couples Dataset

- Register-based, Statistics Denmark
- Socio-demographic characteristics for each year 1981-1994 for all women in fertile age range (13-49)
- Permanent address in Denmark
- Information on births from Register of Population Statistics+Medical Register of Birth and Death
- Coverage complete for children born 1960- (Knudsen, 1993)
The study population

- All women of Danish origin, one-child mothers 1981-1994
The study population

- All women of Danish origin, one-child mothers 1981-1994
- Only single-births considered
The study population

- All women of Danish origin, one-child mothers 1981-1994
- Only single-births considered
- Only women of age 17-40 at first birth
The study population

- All women of Danish origin, one-child mothers 1981-1994
- Only single-births considered
- Only women of age 17-40 at first birth
- Follow-up until end of 1994 or age 45
The sample size

- 329,440 one-child mothers
The sample size

- 329,440 one-child mothers
- 1.3 million records
The sample size

- 329,440 one-child mothers
- 1.3 million records
- 208,390 second births
(In)dependent variables

- age at first delivery (1)
(In)dependent variables

- age at first delivery (1)
- age by the end of each year (2)
(In)dependent variables

- age at first delivery (1)
- age by the end of each year (2)
- duration estimated as (2)-(1) + 0.5
(In)dependent variables

- age at first delivery (1)
- age by the end of each year (2)
- duration estimated as (2)-(1) + 0.5
- union/partnership status
(In)dependent variables

- age at first delivery (1)
- age by the end of each year (2)
- duration estimated as (2)-(1) + 0.5
- union/partnership status
- educational attainment/in education, October previous year
(In)dependent variables

- age at first delivery (1)
- age by the end of each year (2)
- duration estimated as (2)-(1) + 0.5
- union/partnership status
- educational attainment/in education, October previous year
- same for the partner, if any
(In)dependent variables

- age at first delivery (1)
- age by the end of each year (2)
- duration estimated as (2)-(1) + 0.5
- union/partnership status
- educational attainment/in education, October previous year
- same for the partner, if any

for each calendar year: whether the second birth occurred
Age at first birth

<table>
<thead>
<tr>
<th>Age (first birth)</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-19</td>
<td>19,052</td>
<td>5.8</td>
</tr>
<tr>
<td>20-23</td>
<td>94,100</td>
<td>28.6</td>
</tr>
<tr>
<td>24-27</td>
<td>126,778</td>
<td>38.5</td>
</tr>
<tr>
<td>28-31</td>
<td>64,336</td>
<td>19.5</td>
</tr>
<tr>
<td>32-35</td>
<td>19,440</td>
<td>5.9</td>
</tr>
<tr>
<td>36-40</td>
<td>5,734</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Educational attainment

<table>
<thead>
<tr>
<th>Education</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>high further</td>
<td>9,202</td>
<td>2.8</td>
</tr>
<tr>
<td>sh/m. further</td>
<td>57,641</td>
<td>17.5</td>
</tr>
<tr>
<td>vocational</td>
<td>104,458</td>
<td>31.7</td>
</tr>
<tr>
<td>no/low degree</td>
<td>138,898</td>
<td>42.2</td>
</tr>
<tr>
<td>under education</td>
<td>19,241</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Note: This is the educational attainment at the end of the year where the first birth occurred.
Partnership status

<table>
<thead>
<tr>
<th>Type of cohabitation</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>32,932</td>
<td>10.0</td>
</tr>
<tr>
<td>Cohab. w. common child</td>
<td>128,303</td>
<td>39.0</td>
</tr>
<tr>
<td>Cohab. wo. common child</td>
<td>20,255</td>
<td>6.2</td>
</tr>
<tr>
<td>Married</td>
<td>147,950</td>
<td>44.9</td>
</tr>
</tbody>
</table>

Note: The type of cohabitation is registered by the end of the year where the first child is born, not at the actual time of first birth.
Median age at first child

<table>
<thead>
<tr>
<th>Education</th>
<th>Median age at first child</th>
</tr>
</thead>
<tbody>
<tr>
<td>high further</td>
<td>30</td>
</tr>
<tr>
<td>sh/m. further</td>
<td>28</td>
</tr>
<tr>
<td>vocational</td>
<td>25</td>
</tr>
<tr>
<td>no/low degree</td>
<td>23</td>
</tr>
<tr>
<td>under edu</td>
<td>25</td>
</tr>
</tbody>
</table>

Note: Educational attainment by the end of the year where the first birth occurred.
proportional hazards:

$$\lambda_i(t) = \exp [\lambda_0(t) + \beta' x_i(t)]$$
Statistical Methods (1)

- **Proportional hazards:**
 \[\lambda_i(t) = \exp [\lambda_0(t) + \beta' x_i(t)] \]

- Due to discrete nature of data, we model \(P_{it} \) - the cond. probability of delivering the second child in a calendar year given that the year is reached, *discrete-time hazard rate*, (Allison, 1982).

 \[\log \left[-\log (1 - P_{it}) \right] = \lambda_i(t) = \lambda_0(t) + \beta' x_i(t) \]
Software: SAS: "PROC GENMOD" with binomial distribution and complementary log-log link function.
Statistical Methods (2)

- **Software**: SAS: "PROC GENMOD" with binomial distribution and complementary $\log\log$ link function.

- The observed probability for each combination of covariates, k, is $P_k = x_k/n_k$.
Statistical Methods (2)

- **Software:** SAS: "PROC GENMOD" with binomial distribution and complementary log-log link function.
- The observed probability for each combination of covariates, \(k \), is \(P_k = \frac{x_k}{n_k} \).
- Concept of "Deviance/DF" is used as criterion for the model fit being satisfactory.
Results

- Main effects Models
- Age at first birth and duration (1)
- Age at first birth and duration (2)
- Time-squeeze for highly educated? (20-27)
- Time-squeeze for highly educated? (28-31)
- Time-squeeze for highly educated? (32-35)
- Time-squeeze for highly educated? (36-40)
- Age at first birth and duration revisited
Main effects Models

<table>
<thead>
<tr>
<th>Current education</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>high further</td>
<td>1.41</td>
<td>1.47</td>
<td>1.29</td>
</tr>
<tr>
<td>sh./m. further</td>
<td>1.29</td>
<td>1.34</td>
<td>1.28</td>
</tr>
<tr>
<td>vocational</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>no/low degree</td>
<td>0.87</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>under edu</td>
<td>0.59</td>
<td>0.69</td>
<td>0.66</td>
</tr>
<tr>
<td>Deviance/DF</td>
<td>16.5</td>
<td>5.2</td>
<td>2.1</td>
</tr>
</tbody>
</table>

M1: Controlled for duration (baseline), period, age at first birth.

M2: M1 + further control for partnership status.

M3: M2 + further control for partner’s education.
Age at first birth and duration (1)

Interaction between age (at first birth) and baseline duration

- Age at first birth and duration (1)
- Time-squeeze for highly educated? (20-27)
- Time-squeeze for highly educated? (28-31)
- Time-squeeze for highly educated? (32-35)
- Age at first birth and duration (36-40)

Conclusion
Age at first birth and duration (2)

<table>
<thead>
<tr>
<th>Current education</th>
<th>M3</th>
<th>Interaction model</th>
</tr>
</thead>
<tbody>
<tr>
<td>high further</td>
<td>1.29</td>
<td>1.23</td>
</tr>
<tr>
<td>sh./m. further</td>
<td>1.28</td>
<td>1.21</td>
</tr>
<tr>
<td>vocational</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>no/low degree</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>under edu</td>
<td>0.66</td>
<td>0.68</td>
</tr>
<tr>
<td>Deviance/DF</td>
<td>2.1</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Time-squeeze for highly educated? (20-27)

Age at first birth 20–27 years

- Age at first birth and duration (1)
- Age at first birth and duration (2)
- Time-squeeze for highly educated? (20-27)
- Time-squeeze for highly educated? (28-31)
- Time-squeeze for highly educated? (32-35)
- Time-squeeze for highly educated? (36-40)
- Age at first birth and duration revisited
Time-squeeze for highly educated? (28-31)

Age at first birth 28–31 years
Time-squeeze for highly educated? (32-35)
Time-squeeze for highly educated? (36-40)

Age at first birth 36–40 years

- Main effects Models
- Age at first birth and duration (1)
- Age at first birth and duration (2)
- Time-squeeze for highly educated? (20–27)
- Time-squeeze for highly educated? (28–31)
- Time-squeeze for highly educated? (32–35)
- Time-squeeze for highly educated? (36–40)
- Age at first birth and duration revisited

Conclusion
Further interaction with education changed Deviance/DF from 1.7 to 1.8.
Conclusion
Other possible explanations?

- No evidence of a *time-squeeze* as explanation for the higher second birth rates among higher educated was found.
Other possible explanations?

- No evidence of a *time-squeeze* as explanation for the higher second birth rates among higher educated was found.
- *Selection* might be a possible explanation (Kreyenfeld, 2002, Kravdal (2001))
Other possible explanations?

- No evidence of a *time-squeeze* as explanation for the higher second birth rates among higher educated was found.

- *Selection* might be a possible explanation (Kreyenfeld, 2002, Kravdal (2001))

- When comparing women with the same age at first birth but different education levels we don’t take into account that they might have different *preferences*.
Other possible explanations?

- No evidence of a *time-squeeze* as explanation for the higher second birth rates among higher educated was found.
- *Selection* might be a possible explanation (Kreyenfeld, 2002, Kravdal (2001))
- When comparing women with the same age at first birth but different education levels we don’t take into account that they might have different *preferences*.
- "An artefact of the separate modelling of each parity transition" (Kravdal, 2001).
Other possible explanations?

- No evidence of a *time-squeeze* as explanation for the higher second birth rates among higher educated was found.
- *Selection* might be a possible explanation (Kreyenfeld, 2002, Kravdal (2001))
- When comparing women with the same age at first birth but different education levels we don’t take into account that they might have different *preferences*.
- "An artefact of the separate modelling of each parity transition" (Kravdal, 2001).
- Model all parity transitions jointly and include unobserved heterogeneity to represent each woman’s individual *preferences*.
Other possible explanations?

- No evidence of a *time-squeeze* as explanation for the higher second birth rates among higher educated was found.
- *Selection* might be a possible explanation (Kreyenfeld, 2002, Kravdal (2001))
- When comparing women with the same age at first birth but different education levels we don’t take into account that they might have different *preferences*.
- "An artefact of the separate modelling of each parity transition" (Kravdal, 2001).
- Model all parity transitions jointly and include unobserved heterogeneity to represent each woman’s individual *preferences*.
Other possible explanations?

- No evidence of a *time-squeeze* as explanation for the higher second birth rates among higher educated was found.
- *Selection* might be a possible explanation (Kreyenfeld, 2002, Kravdal (2001))
- When comparing women with the same age at first birth but different education levels we don’t take into account that they might have different *preferences*.
- "An artefact of the separate modelling of each parity transition" (Kravdal, 2001).
- Model all parity transitions jointly and include unobserved heterogeneity to represent each woman’s individual *preferences*.
References

Thank you!

m.g.harhoff@biostat.ku.dk